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Brief introduction of LLM Unlearning

LLM unlearning is to selectively remove the influence of specific information whilemaintaining the model’s overall utility for other tasks. The optimization objective of themodel parameters θ can be expressed as follows:
min
θ
L(θ) = min

θ
{−Lf (θ) + λLr(θ)} (1)

• Forget loss Lf (θ) quantifies the model prediction error on the forget set Df .
• Retain loss Lr(θ) ensures the preservation of the model’s utility on the retain set Dr.
• Regularization parameter λ ≥ 0 controls the tradeoff between effectively forgettingundesired information and preserving the model’s utility.

Reference: Geng, Jiahui, et al. ”A Comprehensive Survey of Machine Unlearning Techniques for Large Language Models.” arXiv preprint arXiv:2503.01854 (2025).
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Intrinsic Evaluation of Unlearning Using Parametric Knowledge Traces
1. Introduction
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Main Contibution
1. Introduction

(a) A benchmark: ConceptVectors
• Concept↔ Concept Vector
• Evaluating the ability of unlearning methods to erase parametric knowledge

Ruichen Qiu
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Main Contibution
1. Introduction

(b) Problems of existing unlearning methods
• Suppressing the usage of parametric knowledge without erasing it
• Residual knowledge can be unsuppressed with jailbreaking

Ruichen Qiu
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Main Contibution
1. Introduction

(c) Better unlearning: ablating parametric knowledge
• Preventing model generating text about the concept
• Improving robustness against jailbreaking attacks
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Preliminary
1. Introduction

Focusing on concept erasure
⇒ Information to unlearn is any knowledge about a given concrete concept.
Example: erasing concept of the fictional character Harry Potter
× His best friends are Hermione Granger and Ron Weasley
× His creator is J.K. Rowling

Unlearning evaluation: behavioural tests→ checking model parametersIf some parameters are strongly associated with a certain concept, then this associationshould be scratched post-unlearning.
Ruichen Qiu
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Datasets Construction
2. The ConceptVectors Benchmark

Step 1: Finding Concept VectorsConcept⇒ Tokens (vocabulary)⇒ Token-related vectors
1. Logits value in the projection to the vocabulary (Top 70%)
2. GPT-4 score of the top k tokens related to every vector
→ how clear and prominent the concept expressed bythese tokens is

3. Manual verification of top-scoring vectors

Ruichen Qiu
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Datasets Construction
2. The ConceptVectors Benchmark

Step 2: Generating Behavioural TestsIntrinsic evaluation⇒ Behavioural evaluation
• QA: Use GPT-4 to generate n commonquestions about each concept
• Text completion: Wikipedia articles aboutevery concept (≤ m paragraphs perconcept). From each paragraph, take thefirst half as a query for the model.
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Datasets Construction
2. The ConceptVectors Benchmark

Step 3: Causal Validation of Concept VectorsAdd Gaussian noise to the concept vectorlocated in the first step, and use the questionanswer generated in the second step to evaluatethe model’s response to relevant and irrelevantconcepts.
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Example of Datasets
2. The ConceptVectors Benchmark
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Needle (Oracle)
3. Experiments

Propose Needle as an oracle baseline:
1. Ablate the concept vector by adding a Gaussian noise vector to it

vℓj ← vℓj + ϵ, where ϵ ∼ N (0, 0.1).

2. Perform localized gradient ascent, updating only the obfuscated vector.
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Results
3. Experiments

Ruichen Qiu
Rethinking LLM Unlearning: Benchmarks & Datasets 14 / 32



LLM Unlearning Intrinsic Evaluation of Unlearning Evaluating Deep Unlearning in LLM Extensions

Jailbreak & Robustness
3. Experiments

Activation of the concept vector under different jailbreaking:
1. Crafted: two adversarially crafted prompts
2. ICL: in-context learning adversarial attack
3. LRL: low-resource language adversarial attack
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Jailbreak & Robustness
3. Experiments

1. Correlation between performance in the target concept and the unrelated concept.2. Needle and MEMIT effectively erase knowledge of the ablated concepts while stillretaining high QA performance on the other concepts, but other baseline methodsunlearn unrelated concepts.
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Evaluating Deep Unlearning in Large Language Models
1. Introduction

Ruichen Qiu
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Problem Statement
1. Introduction

LLMs not only know single facts in isolation, but many connected facts. The fact that hasbeen unlearnt can be deduced from facts that are already known by the model.
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Definition
2. Deep Unlearning

Deep Unlearning: The fact is deeply unlearnt if the target fact cannot be deduced fromthe retained facts in the LLM through the given logical rules.
Deductive closure: A knowledge baseK is deductively closed with respect to a set ofrulesR, if there is no new fact can be deduced fromK andR.
Deep Unlearning (Formal): The unlearning methodA deeply unlearns the fact k withrespect to the rule setR if the fact k does not belong in the deductive closure of theretained facts

k /∈ Ω(K \ UA
k ,R).
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Superficial Unlearning vs. Deep Unlearning
2. Deep Unlearning

Ruichen Qiu
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Recall
2. Deep Unlearning

Recall is to measure the extent of deep unlearning of an unlearning methodA,calculating the percentage of any minimal deep unlearning set that has been unlearnt bythe methodA.
Because the minimal deep unlearning set is not unique, the recall takes the maximumvalue on the set of all minimal deep unlearning setsMk,R,K:

Recall(A, k;K,R) = max
U∗

k ∈Mk,R,K

|UA
k ∩ U∗

k |
|U∗

k |
.
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Recall
2. Deep Unlearning
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Accuracy
2. Deep Unlearning

Denote UA,∗
k as the minimal deep unlearning set to calculate the recall. We calculate theaccuracy among the knowledge base excluding this minimal deep unlearning set formeasuring the model utility:

Accuracy(A, k;K,R) =
|(K \ UA,∗

k ) \ UA
k |

|K \ UA,∗
k |

.
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Approximation Algorithm
2. Deep Unlearning

In practical operation, finding the most matching minimal deep unlearning set UA,∗
k is NPhard. An algorithm can generate a large number of minimum depth forgetting sets andfind the most matching one on these sets as an approximation.

Summary:
• Exactly unlearn a minimal deep unlearning set→ recall= accuracy= 1

• Not deeply unlearn the target fact→ recall< 1

• Unlearn extraneous facts→ accuracy< 1
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Challenges
3. EDU-RELAT: Evaluating Deep Unlearning

Why construct a synthetic datasets?
• Existing real-world knowledge bases are noisy and incomplete.e.g. (Country A, is neighbor of, Country B) is in the knowledge base but (Country B, isneighbor of, Country A) is not.
• It is challenging to find the correct prompt to check whether a fact is in the LLM.
×Many false negatives
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Datasets Construction
3. EDU-RELAT: Evaluating Deep Unlearning

EDU-RELAT: a synthetic dataset in a family network
• A synthetic knowledge base consisting of 400 family relationships and 300biographical facts among 100 fictitious people
• A set of realistic logical rules, which are deductions among family relationships

Some details: Control the generation of family networks, names, and biographies to makethem more in line with the actual situation (such as the father and child having the samesurname, the mother and child having a reasonable age difference, etc.)

Ruichen Qiu
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Example of Datasets
3. EDU-RELAT: Evaluating Deep Unlearning
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Results
4. Experiments

• Accuracy when the recall≥ 0.8and Recall when the Accuracy
≥ 0.8

• No unlearning method reaches theregion of both Recall≥ 0.8 andAccuracy≥ 0.8.
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Superficial Unlearning vs. Deep Unlearning
4. Experiments

Deep Unlearning Superficial Unlearning
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Methods Related Benchmarks

• Rethinking LLM Memorization through the Lens of Adversarial Compression
http://arxiv.org/abs/2404.15146

• RESTOR: Knowledge Recovery through Machine Unlearning
http://arxiv.org/abs/2411.00204

• REVS: Unlearning Sensitive Information in Language Models via Rank Editing in theVocabulary Space
http://arxiv.org/abs/2406.09325

• Other benchmarks: TOFU, WMDP, RWKU...
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