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Background

n Model editing pursue localized update of LLMs, i.e., single MLP 
n Our work demonstrates localized fine-tuning is effective for editing
n How can we identify the optimal tuning locations?
n Existing strategy: investigate all layers and modules
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More Efficient Approaches?

n LISA: Layerwise Importance Sampling for Memory-Efficient Large Language
Model Fine-Tuning (NIPS 2024)

n Understanding Layer Significance in LLM Alignment (ArXiv 2024)

n Layer-wise Importance Matters: Less Memory for Better Performance in 
Parameter-efficient Fine-tuning of Large Language Models (EMNLP 2024)
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Motivation

n LoRA is resource-efficient, but generally underperform full FT

n Delve into training statistics in each layer for LoRA and full FT

n Tune on Alpaca-GPT4, record mean norms of each layer at every step
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Observation

n Embedding or LM head exhibits significantly larger norms than 
intermediary layers in LoRA

n LoRA values layerwise importance differently from full fine-tuning
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LISA

Simulate LoRA’s updating pattern via sampling layers to freeze:

n Layers with small norms in LoRA should also have small sampling 
probabilities to unfreeze in full-parameter settings

n Probabilities: 
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Experimental Results: Memory Efficiency

n Memory reduction in LISA allows LLaMA-2-7B to be trained on a 
single RTX4090 (24GB) GPU

n LISA provides almost 2.9 × speedup when compared with full-
parameter training, and ∼ 1.5 × speedup against LoRA
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Experimental Results: Task Performance

n Setting: 
q Train on instruction-following task Alpaca GPT-4 (52k conversation pairs)
q Test on multiple benchmarks: MT-Bench, MMLU, AGIEval, WinoGrande
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Experimental Results: Task Performance

n Results:
q LISA outperforms other fine-tuning methods in most tracks
q LISA even outperforms Full-parameter Training (similar to dropout) 
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Ablation Studies

n Hyperparameters of LISA
q Increasing sampling layers and 

sampling period  leads to better 
performance

n Sensitiveness of LISA
q LISA is quite resilient to differ-

rent random seeds
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Memorization and Reasoning

n LISA is much better than LoRA at memorization-centered tasks
q LISA emphasizes width and restricts depth 
q LoRA emphasizes depth and restricts width

n Width is crucial for memorization, depth is important for reasoning
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Motivation

n LIMA [1] posits pretraining develops knowledge and capabilities, 
alignment refine conversational style and formatting

n Only certain components of LLMs are significantly impacted?

n Examine alignment in model parameter level (layer significance) to
gain deeper understanding 

[1] Lima: Less is more for alignment. NIPS 203. Chunting Zhou, Pengfei Liu, Puxin Xu and et al.
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Quantify Layer Significance

ILA: learn a binary mask to indicate significance for each layer

n Definition 1: ∈-stable at iteration 𝑇. For any 𝑡 > 𝑇, loss satisfies

n Definition 2: Layer Importance. Binary mask 𝛾𝒕 =	 {𝛾𝒕𝒊 ∣ 𝛾𝒕𝒊 ∈ {𝟎, 𝟏}} 𝒊#𝟏
𝑵
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Quantify Layer Significance

ILA: learn a binary mask to indicate significance for each layer
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Layer Importance Ranking

n Layer importance ranking of LLAMA 2-7B identified by ILA on 
LIMA in different training milestones:
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Layer Importance Across Datasets

n Define top 75% highest-scoring layers as important layers (Set 𝑆)

n Jaccard similarity between two datasets:

n Important layers for different datasets exhibit high similarity
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Freeze Unimportant Layers

n Exclude 25% unimportant layers, whose modifications would 
negatively impact fine-tuning

n Freezing unimportant layers may enhance performance

Comparative evaluation of models finetuned on the LIMA Dataset. 
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Tuning Critical Layers Only

n Fine-tune only important layers of Mistral-7B, as identified by ILA, 
on the No Robots dataset

n Focusing on selected important layers nearly matches the performa-
nce of full fine-tuning
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Ablation Study

n Randomly or manually selecting layers does not work
q RL 1 and 2: randomly select K layers to freeze with different seeds
q FL: freeze the first K linear layers
q LL: freeze the last K linear layers
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Cross-dataset Evaluation

n An intuitive hypothesis: layers consistently deemed unimportant 
across all datasets may truly be non-essential

n Intersect the top-K least important layers from three datasets
n Imp. layers across datasets yields better results than specific dataset
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Motivation

n LoRA apply uniform architectural across all layers, ignores the 
varying importance of each layer

n LISA trains partial layers and yields promising results

n IST estimates task-specific importance score of each layer
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Preliminary Observation

Apply LoRA to OPT 1.3B on WikiText across all layers:

1. Gradually remove layers according to contribution to performance

2. Performed PEFT on the most and least important layers

Layer-wise sparsity in PEFT is an inherent characteristic
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Importance-aware Sparse Tuning

IST involves two loops (similar to data 
minimization):

n Fine-tuning loop: selects a subset of 
full layers to update

n Importance updating loop: updates 
importance score of each layer
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Importance-aware Sparse Tuning

n Fine-tuning loop: Define degree of importance as 𝑰	 ∈ 	ℝ𝑵𝑳 and choose 𝑁𝑢 
layers to update based on 𝑰 in each iteration

n Importance updating loop:
q Suppress the response of layer to measure its contribution to the result

q Calculate the rewards according to their loss

q Employ reward to update importance score
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Experimental Results

IST consistently shows an enhancement in model performance on the 
commonsense reasoning task.
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Layer-wise Importance Learning

Visualize layer-wise importance learning process of two tasks

n Layer 2 and 32 significantly 
contribute to commonsense 
reasoning task

n Layer 6 and 18 contribute to 
arithmetic reasoning task most
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Conclusions

n LISA:
q observe the magnitude of parameter changes
q design importance probability
q repeatedly sample a subset of layers during training

n ILA:
q train all layers until convergence
q learn a binary mask to select beneficial parameter changes

n IST: 
q two loops to jointly learn importance scores and parameter updates
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Related Works 

n LIFT: Efficient Layer-wise Fine-tuning for Large Model Models (ArXiv 2024)

q layer-wise fine-tuning strategy that only learns one layer at a time

n Random Masking Finds Winning Tickets for Parameter Efficient Fine-tuning 
(ICML 2024)

q use random masking to fine-tune the pretrained model
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Related Works 

n Investigating Layer Importance in Large Language Models (ArXiv 2024)

q propose an efficient sampling method to faithfully evaluate the importance of layers 
using Shapley values (certain early layers exhibit dominant contribution)

n Spectral Insights into Data-Oblivious Critical Layers in Large Language 
Models (ACL 2025 Findings)

q layers with significant shifts in representation space are also those most affected 
during fine-tuning -- a pattern that holds consistently across tasks for a given model
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Discussion

n Layers in LLMs indeed exhibit varying functions and levels of importance, 
which is intuitive—after all, not all modules can be equally important

n There is currently no consensus on layer importance and different studies 
report varying findings (as a result, their impact has been limited)

n If localized fine-tuning is necessary, the ideal solution would be an efficient 
empirical proxy that enables global identification of critical components, with 
conclusions that generalize within same architecture.
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